Resources search results " performance"

ElectricPAK - Brochure
Franklin Electric
The Pioneer Pump® ElectricPAK™ delivers more than just allllllllmodular design that can arrive on-site and startup quickly.The Pioneer Pump® ElectricPAK™ delivers more than just aThe Pioneer Pump® ElectricPAK™ delivers more than just a modular design that can arrive on-site and startup quickly. It’s also engineered from the ground up to offer a fully streamlined experience for both owners and operators.From initial selection, to installation, to a lifetime of operation: durability and performance are built into every component. Each configured assembly includes high-performance pumps and electric motors that provide better flow, higher head and greater efficiency.modular design that can arrive on-site and startup quickly.It’s also engineered from the ground up tostreamlined experience for both owners and operators.From initial selection, to installation, to a lifetimeof operation: durability and performance are builtinto every component. Each configured assemblyincludes high-performance pumps and electricmotors that provide better flow, higherhead and greater efficiency.It’s also engineered from the ground up to offer a fullystreamlined experience for both owners and operators.From initial selection, to installation, to a lifetimeof operation: durability and performance are builtinto every component. Each configured assemblyincludes high-performance pumps and electricmotors that provide better flow, higherhead and greater efficiency.
Process Control Training—Simulators Are Only Half the Story
PERFORMANCE ASSOCIATES INTERNATIONAL
With reference to greenfield plant projects, using process simulators similar to the designed plant Human-Machine Interface (HMI) or Distributed Control System (DCS) has become common practice. These simulators represent a “virtual plant” based on process modeling of the circuit chemistry and thermodynamics, and on the physical nature of the plant, including equipment, valves, piping, etc. The virtual plant allows trainees to troubleshoot problems, optimize process variables, react to alarms, etc., all based on the process simulation model.  Performance Associates’ experience is that this complex simulator training is valuable, but only after more in-depth training on the process and control logic. To truly optimize a process plant, prior to simulator training, the control room operators must have detailed knowledge of the following:Process objective of each process system, comprising a group of unit operations.Process objective of each unit operation.Process chemistry and the variables affecting it.Important characteristics of each unit operation, the variables affecting it, and the impact on downstream unit operations.Plant control loops, interlocks, and alarms.Safety issues related to the process and control schemes.Operating procedures for start-up and shutdown under various scenarios, as well as important operator tasks.Additionally, trainees must be intimately familiar with the applicable fundamental scientific concepts, such as pressure, temperature, heat exchangers, electricity, PID control logic, combustion, etc. With this fundamental and plant-specific foundation, the process simulator can be fully exploited for training. 
PROCESS CONTROL TRAINING— SIMULATORS ARE ONLY HALF THE STORY
PERFORMANCE ASSOCIATES INTERNATIONAL
With reference to greenfield plant projects, using process simulators similar to the designed plant Human-Machine Interface (HMI) or Distributed Control System (DCS) has become common practice. These simulators represent a “virtual plant” based on process modeling of the circuit chemistry and thermodynamics, and on the physical nature of the plant, including equipment, valves, piping, etc. The virtual plant allows trainees to troubleshoot problems, optimize process variables, react to alarms, etc., all based on the process simulation model. Performance Associates’ experience is that this complex simulator training is valuable, but only after more in-depth training on the process and control logic. To truly optimize a process plant, prior to simulator training, the control room operators must have detailed knowledge of the following:  Process objective of each process system, comprising a group of unit operations.  Process objective of each unit operation.  Process chemistry and the variables affecting it.  Important characteristics of each unit operation, the variables affecting it, and the impact on downstream unit operations.  Plant control loops, interlocks, and alarms.  Safety issues related to the process and control schemes.  Operating procedures for start-up and shutdown under various scenarios, as well as important operator tasks. Additionally, trainees must be intimately familiar with the applicable fundamental scientific concepts, such as pressure, temperature, heat exchangers, electricity, PID control logic, combustion, etc. With this fundamental and plant-specific foundation, the process simulator can be fully exploited for training.
Training Pays: Actual vs. Projected Start-Up Results
PERFORMANCE ASSOCIATES INTERNATIONAL
Developing a profitable mining venture is no small matter. It requires enormous initial investments in research, construction, and equipment. But a mineral processing plant does not run itself. Even with the best equipment and good ore quality, optimal results are dependent upon keeping the process running smoothly, avoiding process upsets, maintaining process variables in the desired range, and minimizing breakdowns and downtime. A highly trained workforce is an essential element in a successful, and profitable, start-up. The knowledge and abilities of plant operators and maintenance personnel can make or break an operation. Trained operators know what to look for during preoperational and routine inspections, allowing maintenance tasks to be planned and unexpected costly breakdowns avoided. Trained operators know what variables exist at different stages in the process and how to make appropriate adjustments in real time. Trained maintenance personnel are well acquainted with the plant equipment, and maintenance planners can schedule work and maintain a spare parts inventory to minimize downtime. Additionally, new operations that train their workforce just prior to plant commissioning can utilize their operators in the commissioning process. Having been trained and gained field experience through plant commissioning, operators are ready to hit the ground running once feed is introduced. A faster ramp-up means more earnings, more quickly. The cost of developing a proper training program is a small percentage of the overall engineering, procurement, and construction budget but it constitutes a large percentage of the gains realized from a successful start-up and ramp-up to full production. Performance Associates International (PAI) has designed and presented custom training programs for operators and maintenance personnel in metallurgical plants around the world for over 35 years. We are proud to have been part of the successful start-ups at Lundin Mining’s Eagle Mine, Vale’s Voisey’s Bay project, and Torex Gold’s El Limon-Guajes project. Click Download to view the actual vs. projected start-up results from these three metallurgical plants that made use of PAI’s custom-built training programs and on-site training.
Mining, Process Plant, Maintenance & Safety Training
PERFORMANCE ASSOCIATES INTERNATIONAL
Excellence in Mining, Process Plant, Maintenance, and Safety Training Performance Associates International, Inc. (PAI) is the world leader in online and on-site training for the mining industry. We provide organizations with a single source for assessments, skills training, continuing education, safety training and compliance mandates, and more. Our first-class content guides your staff to gain the critical knowledge they need to work safely and efficiently today. Our proven, leading-edge industrial training programs improve performance in existing operations and ensure success during the start-up of new operations. Our training programs have saved companies millions in personnel accident prevention, production loss, and equipment damage. We partner with our customers and consult collaboratively to provide the analysis and content development to meet your needs. Services PAI Offers Plant Operator TrainingOur three-tier concept for effective plant operator training starts with fundamental knowledge and progresses to plant-specific concepts that are reinforced through detailed animations and interactive simulations. Maintenance TrainingWe custom build state-of-the-art maintenance training programs using exploded graphics, explanatory text, detailed procedures, and management systems. Mobile Equipment Operator TrainingOur first-class training program focuses on operator controls and indicators, safety, and performance optimization. It also includes operating, emergency, and troubleshooting procedures.Commissioning and Start-UpWe can identify, track, and control the thousands of activities that must occur for the successful commissioning and start-up of a process plant. There is no shortcut to a successful start-up.Testing and Tracking SystemsWe can help manage and track the performance of employees to improve the overall performance of the mine and plant industrial training programs. Our testing and tracking systems provide invaluable assistance in safety and operational compliance. Introductory and Safety TrainingOff-the-shelf introductory and safety training packages are an excellent source for mine and plant industrial training courses. They provide fundamental knowledge and basic training concepts. Now offering online courses!E-Learning, Animations, and SimulationsOur interactive e-learning keeps trainees focused and engaged. Our experienced in-house multimedia team develops state-of-the-art graphics, virtual and mixed reality training, stunning 3D animations, and technically engineered simulations of real-world scenarios.Other ServicesWe also provide many services relevant to planning, analyzing, and evaluating process plants, including:·         Operations readiness plan.·         Planning studies.·         Quality management.·         Systems implementation.·         Statistical process control.·         Reliability-based asset management.·         Productive capacity studies.·         Surveys and needs analyses.·         Economic life analysis.·         Process control strategies and methods.·         Debottlenecking and process optimization.·         Spare parts inventory and analysis.·         Feasibility studies.·         Consulting assistance.Consulting * Gap Analysis * Content Development * LMS * On-Site * Train-the-Trainer * E-Learning * Process Plant Optimization * Training * Safety * Mine Training * Plant Operator Training * Maintenance * Mobile Equipment * Competencies * Commissioning
Mining, Process Plant, Maintenance & Safety Training
PERFORMANCE ASSOCIATES INTERNATIONAL
Excellence in Mining, Process Plant, Maintenance, and Safety Training  Performance Associates International, Inc. (PAI) is the world leader in online and on-site training for the mining industry. We provide organizations with a single source for assessments, skills training, continuing education, safety training and compliance mandates, and more. Our first-class content guides your staff to gain the critical knowledge they need to work safely and efficiently today.  Our proven, leading-edge industrial training programs improve performance in existing operations and ensure success during the start-up of new operations. Our training programs have saved companies millions in personnel accident prevention, production loss, and equipment damage. We partner with our customers and consult collaboratively to provide the analysis and content development to meet your needs.  Services PAI Offers  Plant Operator Training Our three-tier concept for effective plant operator training starts with fundamental knowledge and progresses to plant-specific concepts that are reinforced through detailed animations and interactive simulations.  Maintenance Training We custom build state-of-the-art maintenance training programs using exploded graphics, explanatory text, detailed procedures, and management systems.  Mobile Equipment Operator Training Our first-class training program focuses on operator controls and indicators, safety, and performance optimization. It also includes operating, emergency, and troubleshooting procedures. Commissioning and Start-Up We can identify, track, and control the thousands of activities that must occur for the successful commissioning and start-up of a process plant. There is no shortcut to a successful start-up. Testing and Tracking Systems We can help manage and track the performance of employees to improve the overall performance of the mine and plant industrial training programs. Our testing and tracking systems provide invaluable assistance in safety and operational compliance.  Introductory and Safety Training Off-the-shelf introductory and safety training packages are an excellent source for mine and plant industrial training courses. They provide fundamental knowledge and basic training concepts. Now offering online courses! E-Learning, Animations, and Simulations Our interactive e-learning keeps trainees focused and engaged. Our experienced in-house multimedia team develops state-of-the-art graphics, virtual and mixed reality training, stunning 3D animations, and technically engineered simulations of real-world scenarios. Other Services We also provide many services relevant to planning, analyzing, and evaluating process plants, including: ·         Operations readiness plan. ·         Planning studies. ·         Quality management. ·         Systems implementation. ·         Statistical process control. ·         Reliability-based asset management. ·         Productive capacity studies. ·         Surveys and needs analyses. ·         Economic life analysis. ·         Process control strategies and methods. ·         Debottlenecking and process optimization. ·         Spare parts inventory and analysis. ·         Feasibility studies. ·         Consulting assistance. Consulting * Gap Analysis * Content Development * LMS * On-Site * Train-the-Trainer * E-Learning * Process Plant Optimization * Training * Safety * Mine Training * Plant Operator Training * Maintenance * Mobile Equipment * Competencies * Commissioning  
More - What's Maintenance and What's Not!
PAUL D TOMLINGSON
If its equipment and you do something to keep it running, make it run or make it run better then it’s maintenance. If its equipment and you modify it or move it, that’s not maintenance. If you build, construct or install something, you can’t maintain it until it exists. Wait, there’s more . . .   All equipment is in a constant state of deterioration. That’s why PM is ‘detection oriented.’ The idea is to find the problem and fix it before it blows up!   An overhaul can’t be PM as some think. When an overhaul is required there is so much wrong with the equipment that it must be removed from service. There is nothing left to prevent.   Overhauls and rebuilds are not the same thing. You rebuild the truck engine. And you overhaul the truck.   If your objective is to avoid premature equipment failure and extend equipment life, it’s PM.   If the idea is to use continuous monitoring to asses equipment performance to extend equipment life and avoid the consequences of failure its Reliability Centered Maintenance (RCM). And if you are trying to identify the causes of failure and reduce or eliminate them, you must be able to define reliability. Try this:    Reliability – A measure of the capability of a unit of production equipment, process or circuit to operate at designed capacity within its specified operating envelope while adhering to prescribed maintenance requirements within a designated time period and meet established levels of product output or service duration.     Other stuff  - -     When maintenance has not determined which work requires planning, bad stuff happens. First, planners are overcome with processing work orders for jobs that don’t need planning. Then, by the time the maintenance supervisors are alerted, these small jobs have become emergency repairs. And, when the planner realizes he has been conned into ‘the work order administrator’ he has no time left to plan anything.   The term ‘CMMS’ doesn’t really exist. Few maintenance organizations have a dedicated information system. Most use a work order system which is part of a fully-integrated system also used for inventory control, payroll or purchase order tracking all tied to an accounting. It’s a mystery why other departments think the work order system is the exclusive means of maintenance work control. If you do work - - of any kind - - like road grading in the pit - - use the work order system.      The most successful maintenance managers are those who have figured out that they need help from other departments and have managed to tell them how!   The best mine or plant managers are those who recognize that maintenance needs help from other departments and verifies that they get it.   Operations supervisors are really diplomats. They must ensure that operators don’t bust the equipment while trying to find out what maintenance really does and how to get it.   Maintenance craftsmen are actually ‘frustrated art appreciators’. They know that well-planned work make their jobs easier and allows them to perform higher quality work.   Maintenance foremen have the most difficult jobs in industry. No matter who busted the equipment or who is responsible for the ‘no show’ preceding the sudden failure, it’s their fault!   In the view of most operations folks, ‘downtime’ is only a maintenance term.                   
Interested in BIG Productivity Gains? Wipe Out Non-Productive Driver and Fleet Time
Command Alkon
There’s some good, solid news for the construction industry: Dodge Data & Analytics Index projects that we’ll have “moderate strengthening” through the end of 2018. But in terms of productivity, we appear to be heading in a different direction. Of note, a recent survey of 600 global construction leaders* compiled by PlanGrid and FMI Corporation mentions: ·         Poor communication, rework and bad data management cost the construction industry; $177 billion annually in labor costs in the United States alone. ·         Construction workers lose almost two full working days per week solving avoidable issues and searching for project information. ·         Each construction project team member spends more than 14 hours weekly on average dealing with conflict, rework and other issues. ·         Almost half of all rework is due to poor communication among project stakeholders, and poor project information, while 26% of rework is due to poor communication or miscommunication between team members caused unresponsiveness of team members; the inability of project stakeholders to collaborate effectively; and the lack of a common platform for all team members to communicate and share project data. ·         The most common goals for technology adoption included providing better access to project data, improving project productivity and increasing the accuracy of project information. ·         Workers are not taking full advantage of mobile devices and IT investments. Stamp Out Non-Productive Driver and Fleet Time for Big Productivity Gains It stands to reason that companies who address productivity issues will not only avoid scrambling for information and wasted hours and energy but also quickly gain competitive advantage. If you’re managing drivers and trucks that wheel in and out of numerous sites during the day or week and aren’t using automatic processes via technology to more efficiently track and manage your fleet, there’s more good news. You can increase driver productivity and avoid the 20-40 minutes per truck per day that’s lost through clocking in and out and other non-productive activities during: ·         Time in Transit ·         Time at the Job Site ·         Time in the Yard Forty minutes per day, per truck may seem marginal at first glance. But 200 minutes/week x 48 weeks/ year = 9,600 minutes, 160 hours or a total of 4,000 hours of inefficiency for a fleet of 25 trucks. Time in the yard is the lever most within a producer’s control and represents over half of the total nonproductive time per truck. So, rather than simply adding incremental trucks and drivers to the fleet to boost productivity (which unfortunately only adds to the total non‐productive hours and fails to improve operational processes), consider a solution that: ·         Uses automatic processes via technology to more efficiently track and manage your fleet. ·         Enables your drivers to punch the clock from in the cab, an efficiency enhancer that alone could save you up to 20 minutes per day (this is time spent in your own yard, under your own watch, that you can act on quickly to recapture those minutes, regardless of what happens away from your yard). ·         Captures a meaningful portion of that lost time from each driver. ·         Provides a constant view into the location and performance of your entire fleet. ·         Is adaptable and helps your teams collaborate in real-time with a “central source of truth” and access to relevant data when you need it. At least 50% of employees’ non‐productive time can be captured back efficiently and effectively when the right combinations of levers are pulled – both in terms of area of focus (i.e., time in yard) and adaptability to each individual customer’s business process requirements. This equates to big productivity increases over both the short- and long-term. Learn more about how Command Alkon’s TrackIt solution offers an industry specific, flexible and fully customizable solution to track your fleet and meet your specific needs, including in-cab time and attendance functionality focused at recapturing lost time in the yard, helping you drive a more efficient fleet and improve your profitability. *500 respondents from the United States and 99 from Australia, New Zealand, United Kingdom and Canada. Of those surveyed, 49% work for general contractor firms, 36% came from specialty trades and 15% were owners. Over 300 respondents came from the commercial sector and the other respondents represent industrial and manufacturing, heavy civil, healthcare, power (oil and gas, and energy), education and government.
Interested in BIG Productivity Gains? Wipe Out Non-Productive Driver and Fleet Time
Command Alkon
There’s some good, solid news for the construction industry: Dodge Data & Analytics Index projects that we’ll have “moderate strengthening” through the end of 2018. But in terms of productivity, we appear to be heading in a different direction. Of note, a recent survey of 600 global construction leaders* compiled by PlanGrid and FMI Corporation mentions: ·        •Poor communication, rework and bad data management cost the construction industry; $177 billion annually in labor costs in the United States alone.        •Construction workers lose almost two full working days per week solving avoidable issues and searching for project information. ·       • Each construction project team member spends more than 14 hours weekly on average dealing with conflict, rework and other issues. ·         •Almost half of all rework is due to poor communication among project stakeholders, and poor project information, while 26% of rework is due to poor communication or miscommunication between team members caused unresponsiveness of team members; the inability of project stakeholders to collaborate effectively; and the lack of a common platform for all team members to communicate and share project data. ·        •The most common goals for technology adoption included providing better access to project data, improving project productivity and increasing the accuracy of project information. ·        •Workers are not taking full advantage of mobile devices and IT investments.      Stamp Out Non-Productive Driver and Fleet Time for Big Productivity Gains It stands to reason that companies who address productivity issues will not only avoid scrambling for information and wasted hours and energy but also quickly gain competitive advantage. If you’re managing drivers and trucks that wheel in and out of numerous sites during the day or week and aren’t using automatic processes via technology to more efficiently track and manage your fleet, there’s more good news. You can increase driver productivity and avoid the 20-40 minutes per truck per day that’s lost through clocking in and out and other non-productive activities during: ·         •Time in Transit ·         •Time at the Job Site ·         •Time in the Yard Forty minutes per day, per truck may seem marginal at first glance. But 200 minutes/week x 48 weeks/ year = 9,600 minutes, 160 hours or a total of 4,000 hours of inefficiency for a fleet of 25 trucks. Time in the yard is the lever most within a producer’s control and represents over half of the total nonproductive time per truck. So, rather than simply adding incremental trucks and drivers to the fleet to boost productivity (which unfortunately only adds to the total non‐productive hours and fails to improve operational processes), consider a solution that: ·         •Uses automatic processes via technology to more efficiently track and manage your fleet. ·         •Enables your drivers to punch the clock from in the cab, an efficiency enhancer that alone could save you up to 20 minutes per day (this is time spent in your own yard, under your own watch, that you can act on quickly to recapture those minutes, regardless of what happens away from your yard). ·         •Captures a meaningful portion of that lost time from each driver. ·         •Provides a constant view into the location and performance of your entire fleet. ·        •Is adaptable and helps your teams collaborate in real-time with a “central source of truth” and access to relevant data when you need it. At least 50% of employees’ non‐productive time can be captured back efficiently and effectively when the right combinations of levers are pulled – both in terms of area of focus (i.e., time in yard) and adaptability to each individual customer’s business process requirements. This equates to big productivity increases over both the short- and long-term. Learn more about how Command Alkon’s TrackIt solution offers an industry specific, flexible and fully customizable solution to track your fleet and meet your specific needs, including in-cab time and attendance functionality focused at recapturing lost time in the yard, helping you drive a more efficient fleet and improve your profitability. *500 respondents from the United States and 99 from Australia, New Zealand, United Kingdom and Canada. Of those surveyed, 49% work for general contractor firms, 36% came from specialty trades and 15% were owners. Over 300 respondents came from the commercial sector and the other respondents represent industrial and manufacturing, heavy civil, healthcare, power (oil and gas, and energy), education and government.
Complimentary Maintenance Management Course
PAUL D TOMLINGSON
Complimentary Mining Maintenance Management Course - Maintenance is always more successful when operations, management and staff departments have a more comprehensive understanding of how maintenance works. Then their roles in the support, cooperation and direction of the interdepartmental maintenance effort can create the circumstances that can yield improvement. Education and training of operations, management and staff department personnel adds directly to the effort of improving maintenance.   Those who perform and control maintenance possess significant diagnostic and repair talent. But these skills do not automatically yield management skills. As a result, maintenance often struggles to limit downtime and meet equipment reliability needs. Within maintenance there are many capable personnel who could easily acquire essential management skills providing training and education are provided. The unfortunate reality is that no such training is being provided. Instead, the unfortunate practice of promotion from within does not always produce capable maintenance managers. Typically, an outstanding craftsman is, over time and attrition circumstances, promoted to maintenance manager. Through no fault of his own he had not acquired the requisite management skills for the job. Nor had training been provided. The end result is poorly managed maintenance that ultimately impacts mine operation performance. This oversight requires correction.   When effective maintenance education and training are available and accessible, those who can influence maintenance improvement will use it. Outstanding craftsman will aspire to efficient supervision and management.Operations managers will connect better maintenance to greater availability.Managers will realize cohesive interaction among departments to assure profitability. Complimentary Mining Maintenance Management Course - Over 600 Society of Mining, Metallurgy and Exploration (SME) member organizations are benefiting from the Mining Maintenance Management Course (see attachment) being offered as a complimentary professional courtesy. If you are member of SME you may access the course: Log into http://community.smenet.org Click: Browse then select link to Mining Maintenance Management Course Library. PPT course topics (01 – 22) appear with Word reference (MIT) files for each course topic. Select and download course topics to make them available to your personnel. If you are not an SME member, the course can also be made available for transmission to your organization. Please inquire.   Paul D. Tomlingson, Mining Maintenance Consultant (Retired) Legion of Honor Member – Society of Mining, Metallurgy and Exploration (SME) Denver, Colorado USA [email protected]                  
Get More Performance Out Of Your Crusher
Stedman Machine Company
Get More Performance Out Of Your Crusher impactor maintenanceThere’s an urban legend out there about the company whose maintenance crew mistakenly installed a new crusher with the rotor spinning backwards. It still worked! And you think you have issues? To get the most from your equipment investment, you need to put in the time. Yes, a crusher costs a bit more than your average automobile, but that doesn’t mean it’s maintenance-free. An automobile needs oil changes too, right? Performing regularly scheduled maintenance on impact crushers is crucial for guaranteeing day-to-day reliability and optimum product output. Did you know you can boost output and quality by doing just a little bit more? Even daily cleanups and inspections can increase service life. It’s a no-brainer, though possibly easier said than done. Here are some steps and practices to incorporate in your ongoing operations and maintenance. Beginning with maintenance team education, parts logs, and general maintenance record keeping, plus troubleshooting, these guidelines will help your crusher go the distance. Training: Proper training for consistent maintenance is one of the most fundamental requirements for successful, reliable production. Begin with the crusher’s operation and maintenance manual. Incorporate the manual’s suggested routine maintenance schedule into the maintenance team’s duties. Appoint a “lead person” for each crusher as the go-to for that machine. This person is the historian for the unique operational adjustments the producer has incorporated for raw feed and product requirements. Daily log (document the following every 8 hours): Amperage draw: See if it changes from day to day. If amperage is exceeding normal levels, it could be a signal of bearing problems, loose belts, or general feed issues. Coast-down time: You’re going to need to know (and log) how long it takes the machine to come to a complete stop after shutdown. Here’s why: If the time starts to shorten, this could indicate a bearing problem. Oil pressure: You’ll want to record performance in a variety of operating conditions. This will allow you to identify trends and help to detect problems before they cause costly damage or downtime. Daily maintenance (every 8 hours): Check oil level, sight glass, grease appearance, and other lubrication schedules. Check high temperature or low hydraulic pressure indicators and switches. Check wear parts. Tighten bolts. Inspect belts. Remove dirt and debris from crusher frame surfaces and areas around the machine. Check intake/discharge chutes for any obstructions and/or build up. Check alarms. If electrical changes are made or programs are altered in automated systems, verify that all alarms and interlocks function properly. Don’t be afraid to replace switches or timers that appear damaged or are in poor condition. This is more economical than a major overhaul, but never disable or alter any alarms or interlocks! Lubrication: Completely drain and thoroughly clean out the inside of the oil tank (if you have one) to eliminate any contaminants before refilling. Find contaminant sources. Contaminants such as dust particles and water can get in where oil leaks out. Inspect hydraulic systems and tag any leaks for corrective action on the very next maintenance cycle. Use the proper grade of oil. Use the proper specification of filters. Keep the oil breathers clean. Understand grease versus oil lubrication. Grease requires less-intensive maintenance than that of oil-lubricated systems. Automatic oil lubrication systems or sealed cartridge bearings are for higher speed crushers like vertical shaft impactors, air swept fine grinders, or high-speed cage mills. Most horizontal shaft impactors, hammer mills, and cage mill applications are below 1,000 rpm and grease is sufficient. Maintain a scheduled oil sampling program. By creating a baseline of normal wear, it helps indicate when abnormal wear or contamination is occurring. The exact condition of a mechanical assembly is reflected in the oil. Belts: Inspect V-belt drives for damaged belts or loose belt tension. By replacing cracked, glazed, torn, or separated belts, plus maintaining proper belt tension, you’ll optimize your plant’s performance. Wear parts: Don’t overextend wear parts. Avoid running them so long that they become too worn. You may find that you can no longer rotate breaker bars or interchange wear plates to lower wear areas — and now, you’ve lost half of the wear. Guards: Rubber and chain curtains located in the feed and discharge openings of the crusher are subject to wear and tear. Since they are a first line of protection, it’s important to inspect them regularly and to establish a schedule of regular maintenance. Electrical: When (or if) electrical changes are made, you’ll need to verify that all alarms and interlocks still properly function. Same goes for programs when altered in automated systems. Always check with the manufacturer before making any modifications. Spares recommendation: Keep the recommended spares on hand and order replacements as soon as they are used. A list of recommended spares may be included with your equipment operations manual. If not, contact the manufacturer for recommendations. Update your equipment: All equipment evolves, and the recommended manufacturer upgrades are a good investment for increased life and better crusher performance. Check with the manufacturer for any possible updates. Unapproved modifications: Manufacturer design engineers have considerable field experience, which helps them as they calculate the design and perform prototype testing. Their engineering tasks include calculating bearing loads and bearing clearances. They’ve also worked to maximize throughput by establishing the most efficient speed and setting combinations to optimize impact on the material undergoing reduction. So when plant personnel suggest modifications that alter the intended design, these changes will more than likely hurt the purpose of the original design. As a result, you’ll have a less productive and reliable crusher due to potential damage and overload. Since the manufacturer has a vested interest in how well the crusher performs, contact them before making any modifications Cage Mill Operation and Maintenance Requirements for optimum production and wear part utilization include the following: sleeve wear patterns cage wear pattern identification To increase multi-cage sleeve life, cage rotation should be reversed regularly, if possible. (Some cage mills can be reversed, while others cannot.) By reversing the cage direction, sleeves will be worn from both sides, thus extending wear life. Wear parts: Index and or replace sleeves periodically. Inspect or replace hopper ring and shaft protector, if needed. Cage rebuilding is an option. Bearings: Follow the manufacturer’s recommended specifications and schedule for lubrications, temperature, and vibration ranges of spherical roller bearings in pillow block housings. Horizontal Shaft Impactor Operation and Maintenance Variables affecting product gradation include the following: Rotor speed – Higher rotor speeds produce finer product output.Breaker bar wear & new edges crush finerBreaker bar changes. Apron gap settings – Closer gaps retain the feed longer producing a finer product. Breaker bar wear – Regular inspection and turning will lower operating costs. Throughput (tons per hour) – Overfeeding a crusher can make the output more coarse, but it also causes a number of wear and longevity issues making overfeeding a major concern to avoid. Moisture – Moisture cushions the impact, producing a coarser product. Apron wear – Worn plates can be replaced or moved to areas of lower wear. Spring bridge operation – Spring set height is critical to maintain proper operation of spring bridges. Spring bridges return the aprons to their original positions after an overload situation. The use of altered or non-specified springs can cause equipment damage or catastrophic failure. Requirements for optimum production and wear part utilization include the following: Protect inlet and outlet. Restrict maximum feed size. Maintain feed rate within allowable limits. Check rotor rotation. Use metal detection (required). Check for wear. Follow recommended breaker bar rotation setting sequence. Check rotor breaker bar, wedge, and stop block or jack screws. Check liners and breaker plates. Vertical Shaft Impactor Operation And Maintenance The vertical shaft impactor uses high rotor speeds (1,000 to 3,000 rpm) to apply high energies to the material, and since Energy + Material = Size Reduction, it can create sand from 2-inch feed. Requirements for optimum production and wear part utilization include the following: optimized parts in rotor tube Limit feed size. Use metal detection (required). Observe any vibrations with the use of continuously monitored vibration sensors. Listen to the equipment, if something sounds unusual, shut down and inspect. Limit recirculating product in a closed system. If using water for dust suppression, introduce it into the discharge area if possible. Introducing water in the intake will increase wear. Place weight match shoes opposite one another. The image above shows rotor tubes indexed 90 degrees providing a new wear surface. Wear parts include the following:recommended parts for vertical shaft impactors Shoes and tubes Anvil ring or other inserts Housing liners Rotor table liners and assembly Spares recommendation: Shoes (one complete set) Table liner Anvils (one complete set) Discharge plate The spare parts inventory shown above is recommended for vertical shaft impactors. Hammer Mill operation and Maintenance Up running hammer mills combine impact and shear to reduce material. Down running hammer mills primarily use shear by immediately taking feed to the screen or grate bars where hammers shear the material, until it passes through the openings. Requirements for optimum production and wear part utilization include the following: Lubricate bearings regularly. Regularly inspection (unclamp or unbolt front upper half housing for access to screens and hammers) liners, hammers, hammer bolts, rotor discs, grate bars, and screens. Spares recommendation: Hammers Screens Liners Grinding plate Summary A partnership begins between the manufacturer and the customer when the crusher is installed in the field. The manufacturer needs the customer’s help as much as the customer needs the manufacturer’s help to achieve the highest performance possible. Maintenance service after the sale, although mentioned last, is a central part of crusher system performance. And just in case, the manufacturer will have the people and the parts available 24/7 to assist with any problems. Regardless of the field application, the training of personnel is key to successfully and optimally operating equipment. For the size-reduction industry, crusher maintenance problems are mostly related to inadequate training. This exists at plants both large and small. The most effective education is a current and ongoing program for crews — and that’s what will result in legendary performance.
New plant, automation system double operation’s production capacity
Stedman Machine Company
New plant, automation system double operation’s production capacity By Loretta Sorensen| November 10, 2017 Four generations of the Duff family have overseen quarry operations for the past 67 years at Duff Quarry Inc. in Huntsville, Ohio. Among the reasons for their long-term success is a focus on high-quality, economic throughput. “That’s one of our focal points,” says Ross Duff, vice president. “For the past 10 years, automation has allowed us to maximize safety, improve ease of maintenance and have direct oversight of material quality.” Photo courtesy of Duff Quarry Duff Quarry was bare farm ground when the late C.E. Duff purchased it in 1950. Its abundant limestone deposit runs about 400 ft. deep and covers around 400 acres. Today, with three locations, Duff Quarry includes Ohio Ready Mix and Mr. Concrete Builders Supply, employing more than 60 people in Huntsville, Russells Point and Bellefontaine. Customers come from within a 25-mile radius of Huntsville. New era The Huntsville quarry contains bluish-gray dolomitic limestone, which is ideal for construction materials like concrete and asphalt production, the company says. Upper layers of the quarry’s limestone deposit have a high magnesium content, giving the stone a reddish hue. Lower limestone layers, in laminated sheets, are dark gray. The quarry’s limestone is crushed and used in a number of construction projects, including private and business drives in the area. Duff Quarry customers also purchase a variety of crushed limestone products, riprap, concrete sand, mason sand and gravel. In 2005, when Duff Quarry was responding to increased product demand, it purchased a new limestone crushing plant from Stedman Machine Co. At the time, Duff was updating the plant it had used since 1956, seeking equipment that would offer flexibility with product size. The Duff family first learned about Stedman around 1956, when it purchased a Stedman 48-in. four-row cage mill to process agricultural lime at its old quarry. In 1994, Duff purchased a Stedman Mega-Slam crusher for a different location because the company believed it was a superior crusher with its portable plant. Over two and a half years, a Stedman affiliate, Innovative Processing Solutions, designed and fabricated the new automated system, which utilized Stedman’s 5460 Mega-Slam and 6460 Grand-Slam size reduction impact crushers. Innovative Processing Solutions specializes in custom solutions for bulk material handling systems, using equipment from Stedman and other manufacturers to create a variety of systems. The extended system design timeframe gave the Duff family the opportunity to develop a system that can serve them for many years. “We bought the plant in 2005, installed it ourselves and completed construction in 2007,” Ross says. “It was more than 95 truckloads of steel. Apex Engineering set up our automation. The plant uses twin Stedman impact crushers, a Deister grizzly feeder, scalping screen and twin finish screens.” Twelve employees kept the old plant running while the new plant was designed and installed. Prior to installing the new system, the quarry’s annual processing average was about 600,000 tons of limestone. With the new system, production averages 1.5 million tpy when running at full capacity. Customized crushing From left: Plant Operator Jason Beecraft, Mine Foreman Bill Page, President J David Duff and Vice President Ross Duff. Photos courtesy of Duff Quarry The quarry’s automated system includes a fiber linked A. B. Rockwell PLC system run by redundant Windows-based computer control rooms. Quarry operators manage the automation by utilizing an application that runs through two iPads. The system is set up so only one iPad can make system changes at any one time. The plant operator can access the automation system from anywhere on the mine site. “When we designed our plant, we wanted to avoid having our plant operator watch quarry activities from a remote control room,” Ross says. “Using the iPad allows the plant operator to have direct oversight of material quality and make immediate changes as necessary. “It also eliminated the need to contact the person in the main control center,” Ross continues. “A delayed response is not always the safest way to operate. If the plant operator is right there they can stop or start the plant and inspect any equipment to identify maintenance needs.” The iPad used to control the system uses a WiFi signal generated by a router installed in the quarry. Signal strength can vary but is always strong enough to make iPad use viable, Ross says. “You could even control our plant from an iPhone,” he adds. “Because of the phone’s screen size, that isn’t realistic. But in an emergency I could shut the plant down with my phone.” Initial concerns about dust affecting iPad operation were allayed because the iPad has no vent holes or keyboards that could collect dust from the quarry. “No proprietary software is loaded on the iPad,” Ross says. “It’s basically a touchscreen remote for the main control computer that runs Windows.” Although Duff Quarry’s automated system can be connected to the Internet for updates and other resources, it’s only connected for short periods of time to address a specific need. “Our primary network is an intranet,” Ross says. “We avoid Internet connections as much as possible to reduce hacking potential. Programmers can access our system remotely to adjust it, but we’re very cautious with that.” Precise products Stedman’s Mega-Slam is a primary impact horizontal shaft impactor that effectively handles large feed sizes. The machine is built to handle thousands of materials, ores and chemicals in wet and dry applications. Mega-Slam’s design offers safe and easy access for breaker bar replacement and access to all other areas of the crushing chamber, according to the company. The machine’s front opening feature eliminates the need for a crane. The Grand-Slam secondary impact crusher, meanwhile, is built to handle the same type of materials as the Mega-Slam. Through design simplicity, employees have safe and easy access to breaker bars and all other crushing chamber areas. The twin impact crushers give Duff Quarry the cube-shaped rock that provides greater psi strength when used in concrete mixes, which represents a significant portion of their business. Integrated with an automated variable frequency system, the grizzly feeder provides the variable speeds that allow for maximum throughput without overloading the crushing plant. “Our plant has amperage and motion sensors on every conveyor,” Ross says. “Belt scales directly control throughput on the feeder so production runs at maximum speed without overloading belts. We also use tramp metal detection and pneumatically controlled discharge gates to dump material. In the event that metal makes its way into the plant, our automation system empties all belts to protect the crushers.” Quarry-wide benefits Photo courtesy of Duff Quarry The dolomitic limestone at Duff Quarry is desirable for construction materials like asphalt and concrete. With its automated system, Duff Quarry can also manage electricity meter spikes because the system will automatically cut feed rate if production exceeds 840 tons for more than five seconds. Each crushing plant conveyor is equipped with terminal strips wired to communicate production information to one main processor, allowing one staff member to monitor conveyor performance. All feeders and conveyor operations data are also recorded for use in evaluating the system’s overall performance. The new plant system allows Duff Quarry to crush rock in a variety of weather conditions, including heavy rain. Pumps and drain lines under the plant ensure that flooding cannot occur. The Duff family expected to reduce maintenance issues by at least 50 percent with the new plant because automated data management provides evidence of equipment issues well ahead of a breakdown. Since the plant can now be operated with just two staff members, the company no longer shuts production down for lunch hours. Adjusting product size takes just minutes, and the same conveyor can be used to handle different product sizes. Doubling output Overall, Duff Quarry more than doubled production capacity with its automated system and new plant. “We also have brilliant staff operating the plant,” Ross says. “Bill Page, a foreman here for more than 40 years, is a great example of that.” Over the years, Page tried different methods to prevent screen media clogging. He never found an effective product or method, so Page developed his own: the Blinding Buster. “We wanted to ensure our material quality on the finish end was automated, too,” Ross says. “Bill patented an invention to eliminate screen blinding. Every screen media, by nature, will blind, given the right conditions. The Blinding Buster continuously sweeps blinding off finish screens while we’re in production.” The Blinding Buster consists of two major components: the control assembly and motor assembly. The control assembly wires are designed to connect to the normally open auxiliary contact of a screen’s magnetic starter. The screen can be set up to start manually if the motor start isn’t available. The motor assembly includes a standard 20-ft., 3/8-in. chain that can be cut to any length or extended to accommodate all screen sizes. Installing the Blinding Buster takes a 2-in. black steel pipe mounted level approximately 6 in. above the screen opening. The pipe has to be affixed so it doesn’t vibrate with the screen. “The Blinding Buster allows us to screen in subpar conditions when we normally wouldn’t be able to,” Ross says. “We are also able to dry screen finish products without washing. We’re so happy with this product that we’ve made it available to other quarry producers.” Loretta Sorensen is a freelance writer in Yankton, South Dakota. She produces material on a variety of topics, serves as a ghostwriter and has authored her own books.
Teamwork Helps Integrate Design, Manufacture and Installation of Size- Reduction Systems
Stedman Machine Company
Teamwork Helps Integrate Design, Manufacture and Installation of Size- Reduction Systems By Eric Marcotte, Inside Sales Manager, Stedman Machine Company Designing and deploying size-reduction systems takes experience. Many people can collect and install some of the pieces they feel are needed to create a working system, but experience with the interrelationships between components is harder to find. And to ensure safety and performance, crushing, screening, storage and handling systems need to be professionally engineered. A system is always more than just a collection of parts; they must work together whether it’s a properly designed chute or an elaborate processing plant. Retrofitting new crushers, conveyors, screens or other pieces of equipment is also not always an easy process. Even if drawings and specifications no longer exist, plant designers need to make sense of what is there and know what it takes to make new pieces fit in an existing puzzle. If continuing production during the upgrade is required, system bottlenecks will need to be prevented. For example, raw material or finished product stockpiles may be required to keep downtime to a minimum. Also, access and space requirements need to be confirmed and double-checked. First - Assemble a Team Engineering and expertise in a variety of areas are required to develop size reduction systems, including: crushing, screening, structures, conveyors, chutes, hoppers, dust collection and storage, whether for a small equipment retrofit or a large turnkey facility. CAD and process design software applications are must have. Limit multiple layers of personnel. Work directly with the engineers and personnel to select the equipment and design the system. Project management, installation, scheduling and tracking experience will be needed. Be sure supervisors and installers are MSHA trained and have experience in fieldwork. Second - Process Design While most projects present new challenges, a widely experienced team will bring in ideas from other industries. Typical projects involve the following processes and types of equipment. industrial crusher Load out and material receiving This can be a feed hopper with an apron feeder, belt feeder, vibratory or screw feeder, truck dump or railcar unloading system. Bulk material transportation Designing, building or procuring belt conveyors, stackers, apron conveyors, screw conveyors, and pneumatic handling conveyors. Crushing Crushing is the basic building block of a size-reduction system. Experience with a large range of crushing equipment offers many solutions. Properly feeding material into the crusher greatly increases its efficiency, contributes to even wear and maximizes wear metal costs. Bulk material storage Specifying, providing and installing a range of silos, hoppers or other bulk storage solutions. aggregate crusher Screening Experience with many screening manufacturers to include the right screening solution into the system. Dust Collection Including the proper dust collector and dust collection system is a key component to allow a crushing system to work properly. Experience with many dust collection vendors will facilitate properly sizing, connecting and installing the best dust-collection system solution. Controls and Electrical Components To make sure that all components of a system work together, work with control system engineers, panel builders and electrical contractors to create a working, integrated system. Buildings, Foundations and Structure Design, procurement and specifications for buildings, foundations and structures for the equipment supplied on any system. Third - How to Do It Every project has a different set of circumstances that are unique to it. Try to follow a simple checklist to ensure the best possible solutions to the problems. Initial project team meeting. Crusher and screening testing as required. Define required scope for the system. Create preliminary concepts and drawings. Review with operators and supervisors. After receiving feedback, fine-tune the drawings, concepts and put forth a detailed proposal. Set up kick off meetings as required. Proceed with the purchase of major components. Proceed with a detailed system arrangement. Detail major assemblies. Assemblies put out for detail drawing creation. Drawings are self-checked and then crosschecked for accuracy. Assemblies are re-entered into system layout from detail assemblies to verify fit. Approval drawings sent out as required. Vendor drawings checked and approved. Items checked as they are received. Work with vendors and shipping to verify shipment accuracy. Pictures are taken of all shipments for record purposes. Installation supervisor works with install crew to identify, locate and erect items as needed. As installation finish date nears, begin check of motor rotations, sensors etc. Final customer acceptance – formal reviews to finalize “punch list,” follow up items and document the system is performing as specified. Example - Typical Quarry Expansion A limestone quarry running since the 1950s and producing 500,000 tons per year wanted to increase yearly production capacity up to 1.5 million tons with a new automated plant. The new design needed to have the capability to stockpile hundreds of thousands of tons of finished product. The focus was on creating a state-of-the-art plant with designed-in flexibility to do different product sizing. The automated plant needed to have the ability to run production all day as well as to be able to change the product sizes within 10 minutes. The design and fabrication of a new plant may take up to two years to complete as each idea is considered and "wish lists" are sorted out. You don’t want to come back and say we should have done this or done that. Get the very best of everything you can get into the plant for longevity. The project will include numerous conveyors, sensors, controls, vibrating screens, feeders and other equipment. size reduction machine Installed electronics and control systems feed a programmable logic controller. Each conveyor at the plant is equipped with terminal strips that are all wired to communicate information to one main processor, bringing all of the information together in one place to make it easy to operate. All of the feeders and conveyors are monitored to collect all of the information required to operate the plant. With the ability to monitor the speed of the conveyors and feeders, the quarry can keep an eye on production and troubleshoot maintenance issues. The reason for having an automated control system is that if something goes wrong on one of the conveyors, you’ll see it fast enough to prevent a catastrophe that might require digging out a conveyor. If something does go wrong, the computer can take over and begin dropping conveyors, discharging material and shut the feeder down. Since the quarry can now monitor the conveyors moving, the speeds and the tons per hour, limitations can be set to help catch problems before they become too serious. If something is going wrong, say conveyor 2A is slowing down, you can put limits on how much you want to allow it to slow down before the feeder is paused and then limit how long that feeder stays paused. In the end, the quarry was able to more than double their production capacity with the help of the automated plant. The plant was built, delivered and installed as planned with no problems. This is an ideal situation if a quarry is sitting on huge reserves of limestone and plans to operate the crushing plant well into the future. Projects such as this are successful when the customer’s needs are defined and understood, and the project team – including the customer and all supplier partners work to accomplish the project goals.
Expect More from your Horizontal Shaft Impactor
Stedman Machine Company
By Eric Marcotte The mineral processing industry usually evolves rather than revolutionizes, but the Horizontal Shaft Impactor (HSI) has revolutionized the crushing process in numerous industries.32 IMPACTOR 400 There are several varieties of the HSI, and their similarities are more numerous than their differences. All varieties feature externally fed horizontal rotors with breaker bars, which propel material into a series of apron-mounted breaker plates that crush or pulverize many different types of materials to specified degrees of fineness. In 1946, Dr. Erhard Andreas of Muenster, Germany, patented the “Andreas Impact Crusher System.” His design utilized old torpedo tubes and steel from decommissioned tanks. Since then, there have been many unique features of the design patented, but they all operate similarly. This article reviews current techniques employed to get the most from this versatile design. Versatility Reduction ratios of up to 30:1 are achievable in a single stage. The simple design offers low capital and operating cost. Low headroom requirements make it easy to install. Product sizes may be varied by changing rotor speed and the clearances between rotor breaker bars (also called blow bars or hammers) and apron breaker plates. HSI applications have gone beyond soft and nonabrasive materials such as limestone, phosphate, gypsum and weathered shales, to harder minerals thanks to the introduction of alloy steel rotor breaker bars. Typical alloy steels contain manganese and/or high or medium chromium content. There are many different crushing chamber designs on the market, and proper selection will depend on the knowledge of the application for proper feed, crushing chamber configuration, metallurgy of the crushing chamber components, gap setting and rotational speed. Finally, computer controls can automatically adjust HSI settings on the fly to adjust for wear or changing specs. Operation HSIs have a lined crushing chamber with rotating breaker bar rotor on a horizontal axis. The size reduction takes place quickly along short fracture lines, producing a more cubical product to meet aggregate specifications. This fast impact fracture is different from the slow compression breaking in cone or jaw crushers that produce more slabby or flat material (5:1 length to height ratio). 32 IMPACTOR2 400Feed enters the primary crushing chamber and meets the rotor breaker bars, which impel the feed against the first apron lined with breaker plates. Impact with the rotor, the breaker plate, and inter-particulate collision all contribute to comminution. Material is reduced in the primary chamber and passes by the front apron breaker plate gap, entering the secondary and, in some configurations, tertiary chambers, for final reduction. A high percentage of the initial size reduction comes from the first impact with the rotor breaker bar. Aprons are shaft suspended at the front and from a spindle in the rear, allowing for continuous gap adjustment as wear progresses. Unlike hammer mills, the open discharge impactor has no screens or grates holding material inside the crusher; material is efficiently processed at high rates for low costs. The rotor breaker bars operate best at specific speed ranges for maximum results. As the total processing capacity and rotors get larger, the number of breaker bar rows increases. On smaller sizes, there are only two rows; on larger rotors, there are four or more rows of rotor breaker bars. The optimum configuration has material delivered to each row of rotor breaker bars in a continuous bed over the width of the rotor for optimum performance and consistent wear part utilization. Some rotor interiors are open, and some are closed depending on feed conditions. For example, concrete recycling requires a closed rotor so rebar doesn’t get entangled. Application The HSI is used for all types of material with compressive strength less than about 20,000 lb. per sq. in. It’s widely used for sand and rock for roads, railways, reservoirs, electrical grid isolation, building materials and many industrial applications such as metal reclamation and recycling.34 IMPACTOR3 400 Wear part metallurgy is critical to proper applications and performance. It’s a good idea to keep a log of these items to determine the best wear part selection and maintenance schedule: feed and discharge information, throughput rates, change out records and measurements of worn parts. Proper selection of wear part metallurgy will result in optimum production rates; longer maintenance cycles and fewer changeouts, which reduce costs in labor, increase the wear part’s life as well as reduce downtime. Materials with high moisture content can be successfully handled by using heaters and air cannons to reduce and dislodge material adhering to the crushing components and chamber. Size Control The spacing between rotor breaker bars and breaker plate aprons can be adjusted to produce different products within one crusher. It is possible to crush soft raw material limestone or high-grade harder limestone for cement or asphalt applications with one crusher by externally adjusting the breaker bar and plate settings. Gap adjustment between the rotor breaker bars and breaker plates by manual or computer controlled systems adjusts the crushing gap so that product particle size distribution remains constant. Maintenance HSIs have multi-turn breaker bars for extended life before changeout. Design simplicity offers safe and easy access for breaker bar replacement and access to all areas of the crushing chamber. Front-opening models eliminate the need for a crane in some cases. Rear-opening models can allow unique installation applications. Summary 34 IMPACTOR 400 HSIs have evolved from humble beginnings through improved crushing chamber design and metallurgy advancements to automation controls. HSIs have proven they are capable of size reduction of all types of material sizes and hardness with minimal maintenance and excellent cubical particle size distribution control. Stedman Machine Co., www.stedman-machine.com Eric Marcotte is inside sales manager for Stedman Machine Company
MacLean Innovation Report 2018 - Changing the face of the mining industry
MacLean Engineering
Sometimes a turning point can only be seen clearly in hindsight. Such is the case for the mine of the future as we begin 2018, coming out of a 2017 where major mining companies continued to demonstrate capital spending austerity and focus on debt reduction. All the while, there were growing signals that digitalization, electrification and automation were all gaining momentum, even though actual examples of minesite implementations could as of yet, still be counted on one hand. MacLean took the opportunity that industry downturn presented over the past several years to focus intensely on three key product development ventures – first and foremost, the battery electrification of our entire fleet, which will be complete by the end of 2018; second, the successful introduction of face bolting as a feature on our 975 Omnia bolter; and, third, the launch of the latest addition to our utility vehicle product line – the LR3 Boom Lift for heavy load and high reach applications. The past year was one where for the first time we had a fleet of battery electric vehicles working underground, allowing us the ability to validate our performance and total cost of ownership (TCO) models with real-world data, while at the same time continuing to build out our EV offer across the product lines. Looking forward, as we work hard to fully electrify our fleet of ground support, ore flow/secondary reduction, and utility vehicles, we’re keenly aware that electrification is but one step in the ongoing mechanization of underground mining, a transition to the mine of the future that will be increasingly efficient through digitalization and automation that will increase production and reduce costs.
Superior Maintenance Performance: Three Conditions - One Answer
PAUL D TOMLINGSON
I have attached a PowerPoint (PPT) presentation on how to implementing a Mine Maintenance Management Program. But before you study it please understand that superior maintenance performance is built on three conditions: 1 - Maintenance proficiency – Maintenance personnel from manager to worker are proficient in all aspects of management, control and work execution. 2 - Knowledgeable support – All mining departments understand the help needed to make maintenance successful and provide it. 3 - Strategic direction – Mine managers assign mutually–supporting departmental objectives, provide policies to guide interdepartmental actions and verify performance. The one proven answer that meets these conditions is a quality maintenance program. That program must spell out who does what, how, when and why. These guidelines must be applied to the nine essential maintenance management phases: How to (1) Request or (2) Identify work, (3) Classify it to determine the best reaction, then how to (4) Plan, (5) Schedule, (6) Assign, (7) Control and (8) Measure the resulting work and finally, (9) Assess accomplishments against goals such as performance standards and budgets. All personnel in maintenance as well as those who interact with maintenance must be included in the program since every maintenance action requires a supporting or cooperative interdepartmental reaction. Just as the maintenance planner follows specific planning procedures, so must the purchasing agent who orders major component replacements for the job the planner is organizing. After 44 years as a mining maintenance management consulting in all types of mining operations, I can confidently state that the absence of a quality program will preclude meeting these three conditions and frustrate all efforts to achieve superior maintenance performance.
Making Equipment Replacement Decisions
PAUL D TOMLINGSON
Competition among industries has become globally oriented. Thus, every industry will be examining how they can become more profitable. Increasing the productivity of equipment will be among the logical steps. In turn, older, less productive equipment will be replaced. Modern production equipment will be expensive as well as more complex. Thus, as new capital outlays are considered, there must be more careful consideration than ever before. The singular economic approach to replacing equipment involving primarily accounting personnel must give way to a company team approach. To assure that the best equipment for the job at the best price is purchased, economic as well as performance considerations must be weighed. Maintenance is especially sensitive to this requirement since the new equipment is likely to have many new technological advances that will make it more difficult to maintain. Thus, new maintenance techniques must be introduced and maintenance personnel must be properly trained in applying these techniques. Therefore, plant managers should provide policies that ensure each department recommends features of the new equipment that impact performance and maintenance. Although decisions must embrace performance and maintenance, acquisition cost and long term capital expenses remain an important ingredient. Then, as team decisions are made, there will be better assurance that the right choices are made and that the equipment will effectively support the productivity and profitability requirements of the future
Performance Associates International (PAI) y Torex Gold colaboran para una puesta en marcha exitosa
PERFORMANCE ASSOCIATES INTERNATIONAL
Con demasiada frecuencia, las compañías de recursos naturales ponen en marcha plantas nuevas sin contar con un equipo de operaciones y mantenimiento debidamente capacitado. El resultado puede ser desastroso tanto en términos de seguridad como de ingresos. Obviamente el objetivo fundamental es una planta que funciona de forma segura y rentable. En la mayoría de los casos, la capacitación sobre seguridad que se da antes del arranque de la planta es satisfactoria, resultando en pocos accidentes (o ninguno) durante la puesta en marcha y operaciones subsecuentes. Sin embargo, muchas plantas son negligentes cuando se trata de la buena capacitación de su personal de operaciones y mantenimiento. Un programa de capacitación bien ejecutado compensa con creces los costos de ejecución del mismo. Si se va a presupuestar una ingeniería de alta calidad, un proceso de adquisición eficiente y una gestión de construcción experimentada y comprobada (incluyendo el comisionamiento), ¿por qué dejar a la suerte la capacitación? Performance Associates International (PAI) desarrolló un programa de capacitación por computadora comprensivo, el cual abarca operaciones y mantenimiento, para su planta de oro El Limón-Guajes en el estado de Guerrero, México. En el 2015, los especialistas de capacitación industrial de PAI viajaron al lugar del proyecto para entrenar a los empleados de Torex Gold en anticipación de la puesta de marcha de la planta y la producción de oro. El emprendimiento fue un “éxito masivo,” según Nelson Bodnarchuk, Director, Sistemas Operacionales. Este video cuenta la historia de ese éxito, incluyendo comentarios generosos de los oficiales ejecutivos de Torex, quienes reconocen nuestro papel en la colaboración.
Performance Associates International Assists Torex Gold With Start-Up Success
PERFORMANCE ASSOCIATES INTERNATIONAL
Far too often, natural resource companies start up new plants without a properly trained operations and maintenance team. The results can be disastrous for both safety and revenue. Obviously the ultimate objective is a plant that operates in a safe and profitable manner. In most cases, the pre-start-up safety training is satisfactory, resulting in few if any accidents during start-up and ongoing operations. However, many plants drop the ball when it comes to properly training operations and maintenance personnel. The payback on a properly executed training program far outweighs the cost. If you are going to budget for high-quality engineering, efficient procurement, and experienced and proven construction management (including commissioning), why leave training open to chance? Performance Associates International (PAI) developed an extensive operations and maintenance training program for Torex Gold’s El Limón-Guajes project in the state of Guerrero, Mexico. In 2015, PAI industry training specialists traveled to the project site to carry out the training for Torex Gold employees in anticipation of plant start-up and gold production. The venture was a “massive success,” according to Nelson Bodnarchuk, Director, Operational Systems. This video tells the story of that success, including generous feedback from the executive officers at Torex recognizing our role in the partnership.
Gold and Silver Recovery—Carbon Adsorption Training
PERFORMANCE ASSOCIATES INTERNATIONAL
Founded in 1983, Performance Associates International (PAI) is the worldwide leader in mine and plant industrial training. Our custom interactive modules have improved start-up success and operations for hundreds of clients on nearly every continent. In this training module, we cover how activated carbon is used to concentrate gold and silver from pregnant leach solution. The concentrating process is based on the concept of adsorption, in which complex gold, silver, and (if present) mercury molecules are adsorbed—or adhered—onto small, millimeter sized particles of activated carbon. The adsorption process is carried out at atmospheric temperature and pressure. During the process, the metals migrate from a cyanide leach solution to the surfaces of carbon pores. In addition to the animation, this module includes an animated process flowsheet, process variable target ranges and control methods, as well as alarm response procedures. This module covers one area of a gold ore processing plant. In a typical plant of this type, there would be another 4 to 8 modules that would cover the other plant areas with each module containing the same type of training materials, but specific to that plant area. In the training environment, some concepts are difficult to explain using still 2-D or even 3-D images. When this is the case, we develop animations and/or simulations in order to ensure better transfer of knowledge to our trainees.
Gold Mill Grinding—Example of a Detailed eLearning Operator Training Module
PERFORMANCE ASSOCIATES INTERNATIONAL
This video provides an example of the content and structure of a Performance Associates International computer-based operator training program. In this video, we focus on the user experience of our eLearning module for operators in a gold mill grinding circuit. This example demonstrates the following program features: • Language toggle controls. • Interactive process flowsheets. • Process descriptions. • Principles of operation. • Workbook feature. • Equipment (SAG mill) 3D animation. • Process variables. • Control loops. • Interlocks. • Alarms. • Interactive plot plan. The grinding circuit is just one of 11 modules included in the complete plant operator training program. Each individual module covers the technical aspects of a specific plant area. The program also contains modules presenting basic introductions to many applicable unit operations and a variety of basic mechanical skills. Additionally, detailed maintenance training modules cover each significant piece of equipment in the plant. A comprehensive training component to develop supervisory skills is included as well. Building, running, and maintaining a new plant is a significant investment. A work-force well-trained from top to bottom is the best way to protect that investment by ensuring a successful start-up and continued operations at peak performance. If you are building a plant and preparing your operators and supervisors for start-up and operation, please stop and ask the question “what components of this training program do I NOT want my operations team to be thoroughly familiar with?”